Nuclear elastic scattering of protons below 250 MeV in FLUKA v4-4.0 and its role in single-event-upset production in electronics

Abstract

FLUKA is among the general-purpose codes for the Monte Carlo simulation of radiation transport that are routinely employed to estimate the production of single-event-upsets (SEUs) in commercial static random access memories (SRAMs) exposed to radiation. Earlier studies concerning the production of SEUs in commercial SRAMs under proton irradiation revealed very good agreement between experimental measurements and FLUKA estimates of the SEU production cross section for proton energies above 20-30 MeV. However, at lower proton energies, where the cross section for SEU production in such low-critical-charge components increases drastically, a FLUKA underestimation of up to two orders of magnitude was observed. Preliminary analyses indicated that this underestimation was in great measure due to the lack of nuclear elastic scattering of protons below 10 MeV in FLUKA up to version 4-3.4. To overcome this limitation, a new model for the nuclear elastic scattering of protons has been developed, combining partial-wave analyses and experimental angular distributions. This newly developed model has been included in FLUKA v4-4.0, and leads to an order-of-magnitude improvement in the agreement between FLUKA and experimental cross sections for the production of SEUs in SRAMs under proton irradiation in the 1–10 MeV energy domain.

Link

https://doi.org/10.1016/j.cpc.2024.109276